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Why deep Gaussian processes?
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Sparse GP -0.34 ± 0.11 1.05 ± 4.34 0.56 ± 0.01

Compositional DGP -0.58 ± 0.21 0.46 ± 0.98 1.42 ± 0.39

Deeply Nonstationary GP -0.69 ± 0.11 0.52 ± 1.58 ---

TDGP (Ours) -0.81 ± 0.16 0.25 ± 0.15 1.28 ± 0.33

Deep Gaussian process architectures
• Gaussian processes (GPs) are widely used in machine learning for their simple uncertainty quantification;
• GP’s kernel function → Modelling and uncertainty quality;
• Common stationary kernels, like square exponential and Matérn are unsuitable for non-stationary data;

→ Many geospatial processes, such as sea surface height, bathymetry.
• By composing multiple stationary GPs, this deep Gaussian process model can learn non-stationary functions.

Interpretability of DGP models

Limitations

• A compositional kernel with 𝛕 𝒙 = 𝐖 𝒙 ⋅ 𝒙.
• Around a specific 𝒙, we have 𝚫 𝒙 = 𝐖T 𝒙 𝐖 𝒙 −1;
→ Therefore, this model learns latent spaces and lengthscale fields;
• If 𝐖 ⋅  is a GP, then we obtain a thin and deep GP model.

• Adds 𝑑 × 𝑞 more GPs, making training harder;
• Without adding a bias dimension to input, neighborhood of 0 is 

unaffected;

Compositional kernels

Lengthscale mixture kernels

Locally linear deformations

Limitations

Limitations

• Non-linear warping function: 𝛕 ⋅  → k 𝛕 𝒂 , 𝛕 𝒃 ;

• If 𝛕 𝒙  is a neural network → Deep Kernel Learning;
• If 𝛕 𝒙  is a GP → Compositional deep Gaussian process;

• The more complex 𝛕 ⋅  is, the harder the model is to interpret;
• For DKL, parameters are not Bayesian, thus the model overfits.

• Positive semi-definite function field 𝚫 ⋅
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• If σ 𝚫 ⋅  is a GP w/ linking function σ ⋅  → Deeply Non-stationary GP 

• Does not encode latent spaces; 
• Kernel scale affected by the pre-factor, giving rise to unwanted 

correlations.

Sea surface height experiments

• Isotropic stationary: k 𝒂, 𝒃 = πk 𝒂 − 𝒃 T𝚫−1 𝒂 − 𝒃 ;

→ Kernel is a function of the distance, weighted by the lengthscale matrix 𝚫.

• E.g., squared exponential kernel πk 𝑑2 = exp −
1

2
𝑑2

• For a GP with zero mean and squared exponential kernel:

p f 𝒙 = N 0, 𝑘 𝑥, 𝑥  →  𝑝
𝜕f 𝒙

𝜕𝒙
= N 𝟎, 𝚫−1

• So, the inverse lengthscale matrix is the covariance of the prior covariance of the gradient.

Stationary kernels and lengthscales

• We focus in two broad classes of deep GPs:

• Traditional DGPs are repeatedly deform the outputs of previous layers with non-linear transformations. We 

analyze deep kernel learning [Wilson et al., 2015] and the compositional deep Gaussian process [Damianou 

& Lawrence, 2013].

• Lengthscale-based DGPs extend the notion of a lengthscale kernel to an input-dependent lengthscale field, 

each layer learning the next’s lengthscale field. We study the deeply non-stationary Gaussian process 

[Salimbeni & Deisenroth, 2017] (first proposed by Gibbs [1997] and elaborated by Paciorek [2003]) and the

thin and deep Gaussian process [de Souza et al., 2023].

• As the lengthscale matrix is highly interpretable, it was commonly assumed that lengthscale-based are more 

interpretable than DGPs. However, we observe that the different architectures don’t preserve the simple 

connection with the covariance of the gradient;

• By focusing on the covariance of the gradient, all DGP architectures can be interpreted in the same way 

regardless of their architecture type. 

Discussion and future work
• We propose moving the focus of interpretability away from the lengthscale functions and instead look to 

the prior covariance of the gradient, due to its closer connections to the physics of the problem in hand and 

uniform interpretability between architectures.

• Our preliminary experimental task on sea surface height interpolation with NATL60 data, shows that there 

are differences in data-fit between models, however, these are not directly correlated with gradient 

matching in the prior.

• One way to improve this is to condition the posterior on observed variables that correlate with the 

gradient of the target function. Is this where lengthscale-based DGPs might have a conceptual advantage?

• We use the simulated data from the SWOT Data Challenge 
NATL60 dataset [CLS/MEOM, 2020] at 2013-01-11 00:30.

• We evaluate with 10-fold train/test cross-validation splits.
• The gradient is numerically calculated in terms of the coordinates.
• We initialize the models following de Souza et al. [2023], 7000 

epochs of training with Adam and 50 inducing points for the 
output function and 25 for the latent function.
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By exploiting the
closed-form gradients of different 

architectures of
deep Gaussian processes, we re-

exam and
expand the issue of

physical interpretability of deep 
GP models.
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