Thin and Deep Gaussian processes

Daniel Augusto de Souza, Alexander Nikitin, S. T. John, Magnus Ross, Mauricio A Álvarez, Marc Peter Deisenroth, João P. P. Gomes, Diego Mesquita, César L. C. Mattos

Why (deep) Gaussian processes?

- Gaussian processes (GPs) are widely used in machine learning for their simple uncertainty quantification;
- GP's kernel function \rightarrow Modelling and uncertainty quality;
- Common stationary kernels, like square exponential and Matérn are unsuitable for non-stationary data;
- \rightarrow Many geospatial processes, such as sea surface height, bathymetry. • Popular research direction: how to make non-stationary kernels from common stationary ones.

From stationary to non-stationary

- Stationarity: k(a, b) = k(a b, 0);
- \rightarrow Kernel is effectively a one-argument function, every slice looks the same.
- Isotropic stationary: $k(a, b) = \pi_k ((a b)^T \Delta^{-1} (a b));$ \rightarrow Kernel is a function of the distance, weighted by the lengthscale matrix Δ .
- E.g., squared exponential kernel $\pi_k(d^2) = \exp\left[-\frac{1}{2}d^2\right]$

Compositional kernels

- Non-linear warping function: $\tau(\cdot) \rightarrow k(\tau(a), \tau(b))$; \rightarrow If $\tau(x) = \ell^{-1} \cdot x$, then ℓ gets absorbed in the kernel's lengthscales
- If $\tau(x)$ is a neural network \rightarrow Deep Kernel Learning;
- If $\tau(x)$ is a GP \rightarrow Compositional Deep Gaussian process;

Limitations

- The more complex $\mathbf{\tau}(\cdot)$ is, the harder the model is to interpret;
- For DKL, parameters are not Bayesian, thus the model overfits.
- For DGP, $\tau(\cdot)$ cannot have zero prior mean \rightarrow model collapse with increasing depth;

Lengthscale mixture kernels

• Positive semi-definite function field $\Delta(\cdot)$

$$k_{\Delta}(\boldsymbol{a},\boldsymbol{b}) = \sqrt{\frac{\sqrt{|\Delta(\boldsymbol{a})|}\sqrt{|\Delta(\boldsymbol{b})|}}{|\Delta(\boldsymbol{a}) + \Delta(\boldsymbol{b})|}} \pi_{k} \left((\boldsymbol{a} - \boldsymbol{b})^{\mathrm{T}} \left[\frac{\Delta(\boldsymbol{a}) + \Delta(\boldsymbol{b})}{2} \right]^{-1} (\boldsymbol{a} - \boldsymbol{b}) \right)$$

• If $\sigma(\Delta(\cdot))$ is a GP w/linking function $\sigma(\cdot) \rightarrow$ Deeply Non-stationary GP

Limitations

• Does not encode latent spaces; • Kernel scale affected by the pre-factor, giving rise to unwanted correlations;

Our hybrid proposal

- We propose a compositional kernel: $\tau(x) = W(x) \cdot x$.
- For deeper layers, $\tau^{(2)}(\tau^{(1)}(x)) = W^{(2)}(\tau(x)) \cdot W^{(1)}(x) \cdot x;$
- At the neighborhood of x, we have $\Delta(x) = [\mathbf{W}^{\mathrm{T}}(x)\mathbf{W}(x)]^{-1}$;
- Therefore, we learn latent spaces and lengthscale fields;
- If $W(\cdot)$ is a GP, then we obtain our deep model. $W(\cdot)$ can be zero mean and with learned variances, we optimize for dim. reduction

Limitations

• Adds $d \times q$ more GPs, making training harder; • Without adding a bias dimension to input, neighborhood of 0 is unaffected;

Aalto University

By unifying different approaches to deep Gaussian processes, we build probabilistic models that are more interpretable whilst learning lower-dimensional latent representations for complex, non-stationary data

Very deep GP priors

