
By unifying different approaches 
to deep Gaussian processes, we 
build probabilistic models that 
are more interpretable whilst 

learning lower-dimensional 
latent representations for 

complex, non-stationary data
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Lengthscale mixture kernels

From stationary to non-stationary

Our hybrid proposal

Why (deep) Gaussian processes?

Compositional kernels

TDGP (Ours)DNSGP
[Salimbeni & Deisenroth, 2017b]

Compositional DGP
[Salimbeni & Deisenroth, 2017a]

DKL
[Wilson et al., 2016]

Sparse GP
[Titsias, 2009]

Ground truth

NLPD MRAE

Sparse GP -0.13 ± 0.09 1.19 ± 0.63

Deep Kernel Learning -3.85 ± 0.92 0.59 ± 0.31

Compositional DGP -0.44 ± 0.12 0.83 ± 0.56

Deeply Nonstationary GP -0.31 ± 0.12 1.12 ± 0.75

TDGP (Ours) -0.53 ± 0.10 0.66 ± 0.43

UCI datasets

Prior kernel matrices

Very deep GP priors

Bathymetry on Central Andes 

Dimensionality reduction

Scan me to see the poster, 
blogpost and more!

Limitations

Limitations

Limitations

• Gaussian processes (GPs) are widely used in machine learning for their 
simple uncertainty quantification;

• GP’s kernel function → Modelling and uncertainty quality;
• Common stationary kernels, like square exponential and Matérn are 

unsuitable for non-stationary data;
→ Many geospatial processes, such as sea surface height, bathymetry.

• Popular research direction: how to make non-stationary kernels from 
common stationary ones.

• Stationarity: k 𝒂, 𝒃 = k 𝒂 − 𝒃, 0 ;
→ Kernel is effectively a one-argument function, every slice looks the same.

• Isotropic stationary: k 𝒂, 𝒃 = πk 𝒂 − 𝒃 T𝚫−1 𝒂 − 𝒃 ;
→ Kernel is a function of the distance, weighted by the lengthscale matrix 𝚫.

• E.g., squared exponential kernel πk 𝑑2 = exp −
1

2
𝑑2

• Non-linear warping function: 𝛕 ⋅ → k 𝛕 𝒂 , 𝛕 𝒃 ;
→ If τ 𝑥 = ℓ−1 ⋅ 𝑥, then ℓ gets absorbed in the kernel’s lengthscales

• If 𝛕 𝒙 is a neural network → Deep Kernel Learning;
• If 𝛕 𝒙 is a GP → Compositional Deep Gaussian process;

• The more complex 𝛕 ⋅ is, the harder the model is to interpret;
• For DKL, parameters are not Bayesian, thus the model overfits.
• For DGP, 𝛕 ⋅ cannot have zero prior mean → model collapse 

with increasing depth;

• Positive semi-definite function field 𝚫 ⋅

𝑘𝚫 𝒂, 𝒃 =
𝚫 𝒂 𝚫 𝒃

𝚫 𝒂 + 𝚫 𝒃
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• If σ 𝚫 ⋅ is a GP w/ linking function σ ⋅ → Deeply Non-stationary GP 

• Does not encode latent spaces; • Kernel scale affected by the 
pre-factor, giving rise to unwanted correlations;

• We propose a compositional kernel: 𝛕 𝒙 = 𝐖 𝒙 ⋅ 𝒙.

• For deeper layers, 𝛕 2 𝛕 1 𝒙 = 𝐖 𝟐 𝛕 𝒙 ⋅ 𝐖 1 𝒙 ⋅ 𝒙;

• At the neighborhood of 𝒙, we have 𝚫 𝒙 = 𝐖T 𝒙 𝐖 𝒙 −1;
• Therefore, we learn latent spaces and lengthscale fields;
• If 𝐖 ⋅ is a GP, then we obtain our deep model. 𝐖 ⋅ can be zero 

mean and with learned variances, we optimize for dim. reduction

• Adds 𝑑 × 𝑞 more GPs, making training harder; • Without adding 
a bias dimension to input, neighborhood of 0 is unaffected;
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